

DALE W. JORGENSON ASSOCIATES

1010 MEMORIAL DRIVE, 14C

 CAMBRIDGE, MASSACHUSETTS 02138

Technical Work Plan

Project: Construction of Open Source Model of US Economy -- IGEM

1 Background and purpose

The Science Advisory Board (SAB) to the US Environmental Protection Agency (EPA) in its

report, SAB Advice on the Use of Economy-Wide Models in Evaluating the Social Costs, Benefits,

and Economic Impacts of Air Regulations submitted to the EPA Administrator in September

2017, noted that “CGE (sic, computable general equilibrium) models could provide several

important benefits as a supplement to the EPA’s current set of analytical tools for the analysis of

air regulations.” However, the SAB also noted that CGE modeling is challenging due to their

complexity, large scale. formidable data requirements and a lack of transparency (“the

mechanisms driving their results can be opaque”). The SAB thus recommends that the EPA

“initiate and support a third-party open-source program to assemble and maintain publicly

available high-quality datasets.” It says that “such a database is an example of a public service

that … will benefit public and private decision makers”. The SAB notes that the EPA has been a

leader in the development of benefit-cost analysis, and recommends that the agency “continue

that leadership by beginning to integrate economy-wide modeling, and computable general

equilibrium modeling in particular, into regulatory analysis in order to offer a more

comprehensive assessment of the benefits and costs of air regulations.”

In line with the recommendations of SAB (2017) for EPA to support an open-source database

suitable for CGE models and to integrate CGE models into regulatory analysis, Dale W.

Jorgenson Associates (DJA) proposes to develop an open-source version of their Intertemporal

General Equilibrium Model (IGEM) that will be available and usable by EPA staff and the

interested public. This Open-IGEM will be a self-contained package of data and model code that

someone familiar with CGE models will be able to use. In addition to its accessibility, Open-

IGEM will be complete and transparent in its data sourcing, model documentation and guides to

use and application.

1.1 Overview of IGEM and its use

IGEM reflects a more than four-decade evolution in economic theory, data development,

econometric methodology, model construction, algorithmic solution and application and use. It is

based on solid microeconomic foundations of producer and consumer behaviors with estimated

parameters that conform to their theoretical properties. IGEM remains unique in its application

of the translog flexible functional form with parameters estimated from observed market

behavior revealed over forty to fifty years. Every aspect of this evolution has appeared in peer-

reviewed publications and forums, including those sponsored by the EPA and its SAB and

several involving multi-model comparisons (e.g., the studies of Stanford University’s Energy

Modeling Forum (EMF)).

IGEM is a neo-classical model of economic structure and growth. It is based on a unified

accounting framework consistent with the US National Income and Product Accounts and

selected industry classification systems. IGEM covers all aspects of long-run growth – the supply

of capital, labor, imported and intermediate inputs to production, the rates and directions of

technical change (both autonomous and price-induced) for each producing sector, and the

degrees of substitutability among inputs and commodities in production and final demand

(consumption, investment, governments and foreign trade).

Within IGEM, there are the following substitution possibilities:

• Among the inputs to production – capital, labor, energy and materials and the details of

energy and materials;

• In household decisions

o Saving or the intertemporal choice between present versus future full

consumption (i.e., consumer goods, capital and consumer services and leisure);

o Among consumer goods, capital and consumer services and leisure for

households categorized by family size, race and sex of the household head, rural-

urban status, and region, the leisure choice determining labor supply;

o Among consumer goods and services;

• Among types of investment and capital goods;

• Between competing domestic and imported goods and services;

• Among exported supplies of goods and services;

• Among the components of final demand – household consumption, private investment,

government purchases and exports.

In IGEM, capital accumulation arises from the saving and investment behavior of households

and businesses and provides this essential primary input to production and consumption. IGEM

contains both backward- and forward-looking dynamics as capital availability results from

previous investment and capital goods prices reflect the discounted present value of future

capital service flows. Household decisions occur with perfect foresight on prices, interest rates

and full consumption. Capital and labor are mobile across all producing and consuming sectors.

In solution, IGEM ensures market balances (supply equals demand) in value and quantity terms,

including limits placed on private investment dictated by domestic and foreign saving behavior

and by the fiscal policies of federal, state, and local governments. Solutions include traditional

measures of economic performance (e.g., real GDP, commodity prices and quantities) as well as

those that focus on individual, household and societal welfare, the latter in terms of both

efficiency and equity.

Projections depend on extrapolations of historical trends and calibrations to key driving variables

and input assumptions (e.g., population, world oil prices, budget deficits and trade balances,

domestic tax policies, etc.). Model outcomes portray “best case” scenarios conditional on the

adjustment costs implicit in IGEM’s econometrically estimated parameters.

As part of IGEM’s history of applications for EPA, in 2001-2002, DJA conducted economic

analyses of the benefits and costs of the Clean Air Act, 1970-1990, and the Clean Air Act

Amendments, 1990-2010, for EPA’s National Center for Environmental Economics. For EPA’s

Office of Atmospheric Programs, DJA conducted economic analyses of the following

Congressional climate policy initiatives:

• American Power Act of 2010 (June 2010)

• American Clean Energy and Security Act of 2009 (June 2009)

• Waxman-Markey Discussion Draft of the American Clean Energy and Security Act of

2009 (April 2009)

• Lieberman-Warner Climate Security Act of 2008 (March 2008)

• Low Carbon Economy Act of 2007 (September 2007 and January 2008)

• Climate Stewardship and Innovation Act of 2007 (July 2007)

The newest version of IGEM is based on the North American Industry Classification System

(NAICS) and is estimated econometrically over a time series of IO tables covering the years

1960-2010. It is structured around 36 industries and commodities – 1 each of agriculture,

construction, and transportation, 6 of energy, 15 of mining and manufacturing and 12 of services.

Oil and gas mining now are separated and along with coal, refined petroleum and electric and

gas utilities comprise IGEM’s energy sectors. The manufacturing and services groups offer a

more contemporary view of the U.S. economy; information technology sectors – hardware and

software, wholesale and retail trade, finance, business services, education, and health and welfare

are among the revised model aggregates. The inaugural application of this version of IGEM is

EMF’s multi-model analysis of carbon taxation and revenue recycling (EMF 32).

1.2 Design criteria for Open IGEM

The overarching goal of the project is to produce an open source version of IGEM that can be

widely used by researchers and policy analysts. To achieve that, the model’s implementation

must have the following key characteristics:

• Transparency. The model should be expressed in a form that allows users to focus on the

economic relationships that define it rather than the computational overhead needed to

solve it. Doing so makes the model’s underlying mechanisms as clear as possible to

users, or to outside parties evaluating an analysis carried out with the model. In addition,

the model’s solution procedure should be well-established and clearly documented.

• Flexibility. The implementation should allow users to adapt the model to new uses, or to

extend or revise the model to incorporate new data or improved theoretical models of

behavior. Ideally, the open version of the model should be a platform for facilitating a

wide range of new research and analysis. In addition, the implementation should be

flexible in the range of simulations it allows by providing flexible partitioning of the

model’s variables into endogenous and exogenous sets. For example, it should be

possible to run a simulation endogenously calculating the tax rate (usually exogenous)

needed to achieve a particular revenue target (usually endogenous).

• Reliability. The implementation should reduce or eliminate many common kinds of

coding errors that can lead to models that are incorrect in subtle ways that are difficult to

detect and debug. This aspect is particularly important since the goal of the project is to

enable new users with less experience in large scale modeling to carry out high-quality

analysis. In addition, the model should solve reliably: the solution procedure should not

fail to find a solution when one exists (i.e., it should not fail for correctly specified

models), nor should it require sophisticated tuning and adjustment on the part of the user.

Finally, intertemporal models with forward-looking agents and saddle-path stability

should solve reliably.

• Capacity. The implementation should be capable of handling models with a high degree

of dimensionality, including large numbers of sectors and households. In addition, it

should support a high degree of intertemporal detail, allowing models to include large

numbers of state and costate variables (e.g., models with sector-specific capital), and

allowing transversality conditions at the model’s terminal steady state or balanced growth

equilibrium to be applied in a straightforward manner.

2 The Structure of Open IGEM

2.1 Introduction to Open IGEM

To achieve these goals, we have designed Open IGEM to consist of two parts to separate the

building of the economics of the model from the building of the executable code.

• Front-end part contains the equations of the model in a high-level form that reads almost

like the algebraic form as written in the Model Equation Appendix. It also contains the

data structures in a high-level form.

• Back-end part contains the model in GEMPACK form; this consists of the equations

written in GEMPACK code and data files that are readable by GEMPACK so that the

model can be solved.

With this separation of the model’s economics from the solution algorithms it uses, we allow the

typical user to focus on the theory of the economic model without worrying about the complexity

of learning the GEMPACK system and coding it. This structure also allows the user to use a

different model solution software package other than the GEMPACK system used here, for

example, GAMS. Implementing with a different software system would not be trivial, but would

be much easier given the front-end piece. The remainder of this Section 2 describes the front-end

piece and Section 3 describes the implementation in GEMPACK.

The main feature of the front-end part is the model equations written in a portable, general-

purpose language called Sym developed by McKibbin and Wilcoxen (2013). Sym is developed

to facilitate the translation of model equations written in algebraic form to the form used by the

solution software such as GEMPACK or GAMS. Sym is a set-driven matrix language that

descends from GAMS and GEMPACK. It imposes rigorous conformability rules on all

expressions to eliminate a broad range of potential errors in the design and coding of the model.

A useful consequence of these rules is that subscripts are generally unnecessary and the model

can be expressed very concisely and cleanly. Sym is described in more detail in section 2.3

below.

2.2 Overview of key components of Open IGEM

The distribution package of Open IGEM will consist of a large set of files. Here we summarize

the components of this intended system.

• An equation appendix in a Word file listing all the model equations in algebraic form.

This consist of two parts, the first is the set of equations defining the intertemporal

equilibrium solution of the model. The second part consists of post-solution equations

giving variables of interest that depends on the endogenous variables in the first part, e.g.

energy flows in BTUs, welfare indices, productivity decompositions, etc.

• A set of files of the model coded in the Sym language. These files define the sets,

variable names and equations.

• The GEMPACK ready model file generated by Sym; i.e. the file with the information to

set up the GEMPACK sets and the equations written in the GEMPACK TABLO form.

• One or more parameter files in CSV form (or another widely used format); this is a list of

parameter names and their values. Parameter values do not change over time.

• File with list of variables, and indicators as to which are (typically) exogenous and which

endogenous. A short description of the variable goes with each one.

• Files in CSV form with data on baseline values of exogenous variables, i.e. data for each

period in the solution horizon. These include population variables, world commodity

prices, government deficits, fiscal parameters such as tax rates and depreciation schedules,

exogenous portions of productivity change (latent terms in the cost functions), the

productivity terms may include those that are used to calibrate, say, the growth rate of

GDP if the model user requires the solution to meet a particular growth path.

• Files with the baseline solution; i.e. values of the endogenous variables for each period

produced by the solution software (GEMPACK). The set of endogenous variables is large

and tools will be provided to enable users to choose which ones to store in the solution

files.

• A set of files with an example of a policy simulation exercise.

2.3 Computational form of the model’s equations

Open IGEM’s equations would be provided as a set of files written in Sym, a high-level

modeling language developed by McKibbin and Wilcoxen (2013). Sym is a set-driven language

that descends from GAMS and GEMPACK. It has several features that make it attractive for use

with Open IGEM. First, it handles all subscripting automatically and allows models with high

dimensionality to be expressed in a clean and concise form very close to matrix notation.

Second, models expressed in Sym can be translated automatically into forms suitable for a range

of backend solution packages. As a result, it cleanly separates the economic definition of the

model from the solution algorithm, and it allows the model to be moved from one package to

another very easily if needed. Complete code for the translation program will be made open

source as part of the project.

Most importantly, however, Sym imposes rigorous conformability rules on each operation within

each equation, which eliminates a broad range of potential errors in the design and coding of a

model. Sym’s conformability rules are designed to prevent an important problem that arises in

large-scale computational models: incorrectly-coded equations that are mathematically legitimate

but economically nonsensical. Detecting and debugging such equations can be quite difficult.

For example, suppose a model has four households that represent US regions from the northeast

to the southwest (𝑛𝑒, 𝑠𝑒, 𝑛𝑤, 𝑠𝑤) and each household buys four inputs that represent capital,

labor, energy and materials (𝑘, 𝑙, 𝑒, 𝑚). Total spending by each household (𝑣) could be

computed from household purchases of each good (𝑞) and the corresponding good’s price (𝑝) as

shown in (1):

(1) [

𝑣𝑛𝑒

𝑣𝑠𝑒

𝑣𝑛𝑤

𝑣𝑠𝑤

] = [

𝑞𝑛𝑒,𝑘 𝑞𝑛𝑒,𝑙 𝑞𝑛𝑒,𝑒 𝑞𝑛𝑒,𝑚

𝑞𝑠𝑒,𝑘 𝑞𝑠𝑒,𝑙 𝑞𝑠𝑒,𝑒 𝑞𝑠𝑒,𝑚

𝑞𝑛𝑤,𝑘 𝑞𝑛𝑤,𝑙 𝑞𝑛𝑤,𝑒 𝑞𝑛𝑤,𝑚

𝑞𝑠𝑤,𝑘 𝑞𝑠𝑤,𝑙 𝑞𝑠𝑤,𝑒 𝑞𝑠𝑤,𝑚

] [

𝑝𝑘

𝑝𝑙

𝑝𝑒

𝑝𝑚

]

However, small coding errors can easily lead incorrect implementations. For example, in (2), the

transpose of 𝑞 has been used:

(2) [

𝑣𝑛𝑒

𝑣𝑠𝑒

𝑣𝑛𝑤

𝑣𝑠𝑤

] = [

𝑞𝑛𝑒,𝑘 𝑞𝑠𝑒,𝑘 𝑞𝑛𝑤,𝑘 𝑞𝑠𝑤,𝑘

𝑞𝑛𝑒,𝑙 𝑞𝑠𝑒,𝑙 𝑞𝑛𝑤,𝑙 𝑞𝑠𝑤,𝑙

𝑞𝑛𝑒,𝑒 𝑞𝑠𝑒,𝑒 𝑞𝑛𝑤,𝑒 𝑞𝑠𝑤,𝑒

𝑞𝑛𝑒,𝑚 𝑞𝑠𝑒,𝑚 𝑞𝑛𝑤,𝑚 𝑞𝑠𝑤,𝑚

] [

𝑝𝑘

𝑝𝑙

𝑝𝑒

𝑝𝑚

]

Another possible error is shown in (3), where the order of elements in vector 𝑝 has been

permuted and no longer aligns with the columns of 𝑞:

(3) [

𝑣𝑛𝑒

𝑣𝑠𝑒

𝑣𝑛𝑤

𝑣𝑠𝑤

] = [

𝑞𝑛𝑒,𝑘 𝑞𝑛𝑒,𝑙 𝑞𝑛𝑒,𝑒 𝑞𝑛𝑒,𝑚

𝑞𝑠𝑒,𝑘 𝑞𝑠𝑒,𝑙 𝑞𝑠𝑒,𝑒 𝑞𝑠𝑒,𝑚

𝑞𝑛𝑤,𝑘 𝑞𝑛𝑤,𝑙 𝑞𝑛𝑤,𝑒 𝑞𝑛𝑤,𝑚

𝑞𝑠𝑤,𝑘 𝑞𝑠𝑤,𝑙 𝑞𝑠𝑤,𝑒 𝑞𝑠𝑤,𝑚

] [

𝑝𝑒

𝑝𝑘

𝑝𝑙

𝑝𝑚

]

A third error, as shown in (4), would be to use a price defined on a completely different domain,

such as goods 𝑎 to 𝑑 rather than inputs 𝑘 to 𝑚:

(4) [

𝑣𝑛𝑒

𝑣𝑠𝑒

𝑣𝑛𝑤

𝑣𝑠𝑤

] = [

𝑞𝑛𝑒,𝑘 𝑞𝑛𝑒,𝑙 𝑞𝑛𝑒,𝑒 𝑞𝑛𝑒,𝑚

𝑞𝑠𝑒,𝑘 𝑞𝑠𝑒,𝑙 𝑞𝑠𝑒,𝑒 𝑞𝑠𝑒,𝑚

𝑞𝑛𝑤,𝑘 𝑞𝑛𝑤,𝑙 𝑞𝑛𝑤,𝑒 𝑞𝑛𝑤,𝑚

𝑞𝑠𝑤,𝑘 𝑞𝑠𝑤,𝑙 𝑞𝑠𝑤,𝑒 𝑞𝑠𝑤,𝑚

] [

𝑝𝑎

𝑝𝑏

𝑝𝑐

𝑝𝑑

]

Under standard linear algebra, which only requires conformability between the number of

columns of 𝑞 and the number of rows of 𝑝, (2) through (4) are all legitimate and can be

computed: none will be flagged as incorrect by conventional software. That makes them hard to

detect and correct: such a model will usually run, but it will produce invalid results that may not

be obviously wrong.

Languages such as GEMPACK avoid many of problems noted above by foregoing matrix

notation and requiring explicit subscripting of all variables in all equations. Sym takes a

different approach. Rather than requiring equations to be written in scalar notation, it imposes a

set of conformability rules that allow it to deduce the appropriate alignment of variables

unambiguously in each operation. In effect, the rules allow it to handle all subscripting

automatically. The result is that Sym preserves the clarity and simplicity of matrix notation

without introducing the opportunities for error discussed above.

Example application:

To illustrate how Sym works we now consider how the calculation above would be implemented.

First, Sym files consist of three types of statements: set declarations, parameter and variable

declarations, and equations. All statements end with a semicolon, and any text after two

consecutive slashes (//) and continuing to the end of the line is taken to be a comment and is

ignored. Figure 1 shows an example of Sym code that implements a few calculations involving

the household expenditures mentioned above. It begins with declarations that create a set of time

periods (discussed in detail in a subsequent section), a set of households (𝑛𝑒, 𝑠𝑒, 𝑛𝑤, 𝑠𝑤), and a

set of inputs (𝑘, 𝑙, 𝑒, 𝑚). The next block of statements defines the variables: the price of each

input (𝑝); the quantity of each input purchased by each household (𝑞); the value of spending on

each input by each household (𝑣); the total value of spending by each household (𝑣𝑏𝑦); and the

total value of spending on each input (𝑣𝑜𝑛).

Figure 1: Example of Sym Code

set time (t0,t1,t2,t3,t4,t5) ;

set households (ne,se,nw,sw) ;

set inputs (k,l,e,m) ;

variable p(inputs) ;

variable q(households, inputs) ;

variable v(households, inputs) ;

variable vby(households) ;

variable von(inputs) ;

v = q*p ;

vby = sum(inputs, v) ;

von = sum(households, v) ;

The final lines in Figure 1 are equations defining the three value variables. In the first equation,

Sym interprets 𝑣 = 𝑞 ∗ 𝑝 to mean an element-by-element operation: each element of 𝑣 will be

the product of an appropriate element of 𝑞 multiplied by an appropriate element of 𝑝. It then

applies a set of conformability rules to ensure that elements of the three variables (𝑣, 𝑞 and 𝑝)

can be aligned unambiguously. In this case, two conformability rules apply. The first applies all

multiplication operations, and in this case it requires that the set over which 𝑝 is defined must

exactly match one of the sets over which 𝑞 is defined. The second rule applies to all equality

operations, and in this case it requires that 𝑣 and 𝑞 ∗ 𝑝 must be defined over identical sets.

In the example, the multiplication rule is satisfied because 𝑝 and 𝑞 are both defined over 𝑖𝑛𝑝𝑢𝑡𝑠.

This allows Sym to determine unambiguously which price goes with each quantity: the elements

of 𝑝 and 𝑞 are matched according to the set they have in common, 𝑖𝑛𝑝𝑢𝑡𝑠. As a result, 𝑞 ∗ 𝑝

will have elements such as 𝑞𝑛𝑒,𝑘𝑝𝑘 and 𝑞𝑠𝑤,𝑚𝑝𝑚, as intended. Because Sym uses the common

set to align 𝑞 and 𝑝, it prevents the error shown in (2), where 𝑞 was transposed. As a result,

unlike under standard matrix notation, multiplication under Sym is commutative: 𝑞 ∗ 𝑝 and 𝑝 ∗ 𝑞

will produce identical results. Finally, because Sym aligns variables based on the names of the

elements in each set, not on the order in which they were listed in the set declaration, the

calculation is invariant to permutations in the list of elements. This eliminates the error shown in

(3), where the order of elements in 𝑝 was permuted.

The rule also allows Sym to catch the error in (4) where 𝑝 was defined over an incorrect set (that

is, it was a vector of prices for the wrong set of things). For example, the code in Figure 2

defines 𝑝 over the set 𝑔𝑜𝑜𝑑𝑠 rather than the set 𝑖𝑛𝑝𝑢𝑡𝑠 (differences from Figure 1 are shown in

bold). Since 𝑝 and 𝑞 no longer have a set in common, Sym generates the compile-time error

message shown in Figure 3 indicating that 𝑞 ∗ 𝑝 is not conformable.

Figure 2: Sym Code Triggering a Conformability Error

set time (t0,t1,t2,t3,t4,t5) ;

set households (ne,se,nw,sw) ;

set inputs (k,l,e,m) ;

set goods (a,b,c,d) ;

variable p(goods) ;

variable q(households, inputs) ;

variable v(households, inputs) ;

variable v_by(households) ;

variable v_on(inputs) ;

v = q*p ;

vby = sum(inputs, v) ;

von = sum(households, v) ;

Figure 3: Conformability Error Message

Equation 1

Input File Error:

 Arguments not Conformable

 Expression: q*p

 Left side: q

 Domain: households,inputs,time

 Right side: p

 Domain: goods,time

The equality rule is simpler but it still eliminates potential errors. It ensures that there is exactly

one unambiguous element of 𝑣 for each element of 𝑞 ∗ 𝑝. Together, the two rules produce the

set of calculations shown in (5):

(5) [

𝑣𝑛𝑒,𝑘 𝑣𝑛𝑒,𝑙 𝑣𝑛𝑒,𝑒 𝑣𝑛𝑒,𝑚

𝑣𝑠𝑒,𝑘 𝑣𝑠𝑒,𝑙 𝑣𝑠𝑒,𝑒 𝑣𝑠𝑒,𝑚

𝑣𝑛𝑤,𝑘 𝑣𝑛𝑤,𝑙 𝑣𝑛𝑤,𝑒 𝑣𝑛𝑤,𝑚

𝑣𝑠𝑤,𝑘 𝑣𝑠𝑤,𝑙 𝑣𝑠𝑤,𝑒 𝑣𝑠𝑤,𝑚

] = [

𝑞𝑛𝑒,𝑘𝑝𝑘 𝑞𝑛𝑒,𝑙𝑝𝑙 𝑞𝑛𝑒,𝑒𝑝𝑒 𝑞𝑛𝑒,𝑚𝑝𝑚

𝑞𝑠𝑒,𝑘𝑝𝑘 𝑞𝑠𝑒,𝑙𝑝𝑙 𝑞𝑠𝑒,𝑒𝑝𝑒 𝑞𝑠𝑒,𝑚𝑝𝑚

𝑞𝑛𝑤,𝑘𝑝𝑘 𝑞𝑛𝑤,𝑙𝑝𝑙 𝑞𝑛𝑤,𝑒𝑝𝑒 𝑞𝑛𝑤,𝑚𝑝𝑚

𝑞𝑠𝑤,𝑘𝑝𝑘 𝑞𝑠𝑤,𝑙𝑝𝑙 𝑞𝑠𝑤,𝑒𝑝𝑒 𝑞𝑠𝑤,𝑚𝑝𝑚

]

As indicated in equation (5), in Sym the expression 𝑞 ∗ 𝑝 does not imply summing along either

of the dimensions (as would be the case with standard matrix notation). Instead, as shown in the

final two lines of Figure 1, the sum is taken explicitly via a sum operator that indicates the

dimension over which the sum is to be computed. As a result, the two equations are clean and

easy to interpret because they closely match the logic of their conventional scalar counterparts,

shown below, except that subscripts are implicit:

(6) 𝑣𝑏𝑦ℎ = ∑ 𝑝𝑔 ⋅ 𝑞ℎ,𝑔𝑔𝜖{𝑐𝑎𝑝,…,𝑚𝑎𝑡} , ∀ℎ𝜖{𝑛𝑒, … , 𝑠𝑤}

(7) 𝑣𝑜𝑛𝑔 = ∑ 𝑝𝑔 ⋅ 𝑞ℎ,𝑔ℎ𝜖{𝑛𝑒,…,𝑠𝑤} , ∀𝑔𝜖{𝑐𝑎𝑝, … , 𝑚𝑎𝑡}

There is no need for the equation to include explicit subscripts because all subscripting is

handled internally by Sym.

Sym’s conformability rules apply to arrays with more dimensions as well. For example, suppose

the calculation above were to be implemented in a model with two regions, the US (𝑢𝑠) and the

rest of the world (𝑟𝑜𝑤). In that case, as shown in Figure 4, the variables would each be defined

over the additional set (differences from Figure 1 shown in bold). However, no changes would

be needed in the three equations because their meaning can be determined unambiguously from

the definitions of the variables.

Figure 4: Example Extended to Multiple Regions

set time (t0,t1,t2,t3,t4,t5) ;

set households (ne,se,nw,sw) ;

set inputs (k,l,e,m) ;

set regions (us,row) ;

variable p(inputs, regions) ;

variable q(households, inputs, regions) ;

variable v(households, inputs, regions) ;

variable v_by(households, regions) ;

variable v_on(inputs, regions) ;

v = q*p ;

vby = sum(inputs, v) ;

von = sum(households, v) ;

The multiplication operation would again be aligned on the common sets between 𝑞 and 𝑝, in

this case 𝑖𝑛𝑝𝑢𝑡𝑠 and 𝑟𝑒𝑔𝑖𝑜𝑛𝑠, and the equality operation would again be aligned on identical

elements in 𝑣 and 𝑞 ∗ 𝑝. For example, purchases of 𝑘 by the 𝑛𝑒 household in the US would be

computed as shown in (8):

(8) 𝑣𝑛𝑒,𝑘,𝑢𝑠 = 𝑞𝑛𝑒,𝑘,𝑢𝑠𝑝𝑘,𝑢𝑠

The two sums generalize in the expected way as well: each sums along the indicated dimension

of 𝑞 ∗ 𝑝:

(9) 𝑣𝑏𝑦ℎ,𝑟 = ∑ 𝑝𝑔,𝑟 ⋅ 𝑞ℎ,𝑔,𝑟𝑔𝜖{𝑐𝑎𝑝,…,𝑚𝑎𝑡} , ∀ℎ𝜖{𝑛𝑒, … , 𝑠𝑤}

(10) 𝑣𝑜𝑛𝑔,𝑟 = ∑ 𝑝𝑔,𝑟 ⋅ 𝑞ℎ,𝑔,𝑟ℎ𝜖{𝑛𝑒,…,𝑠𝑤} , ∀𝑔𝜖{𝑐𝑎𝑝, … , 𝑚𝑎𝑡}

As a result, Sym’s conformability rules allows the size and scope of the model to be changed

simply by changing the sets over which variables are defined. In most cases, the equations need

no modifications.

Backend solution packages supported:

As noted earlier, Sym is a language for expressing models clearly and concisely, and for

checking the internal logic of the equations. Models written in Sym can be translated

automatically via a program, also called Sym, into the native code used by a range of backend

solution packages including the matrix programming language Ox (used by the G-Cubed model

in McKibbin and Wilcoxen, 2013), GEMPACK, and TROLL code. Extensions to other

languages, such as GAMS, are straightforward as the output code generator is cleanly separated

from the parser that reads the input files and carries out compatibility checks.

Flexible input format:

Sym allows model code to be broken up into an arbitrary number of files which are then merged

when the model is compiled into its backend form. In addition, Sym is order-independent, and

the definitions of parameters, variables and equations can be freely mixed in the files. Finally,

Sym allows white space (including carriage returns) to be used freely throughout its input.

Features for handling of time periods:

All variables are implicitly defined over an ordered set 𝑡𝑖𝑚𝑒 that can contain an arbitrary number

of periods. Parameters, in contrast, are taken to be invariant and not implicitly defined over the

time set. (If time-varying parameters are needed they can be declared as variables rather than

parameters). Because 𝑡𝑖𝑚𝑒 is ordered, the operators 𝑙𝑒𝑎𝑑() and 𝑙𝑎𝑔() can be used in equations.

Figure 5 shows how a typical capital accumulation equation might be implemented in a model

with three sectors, each having its own sector-specific investment good and capital stock, that is

to be simulated over six time periods (𝑡0 to 𝑡5). Because all variables are implicitly time-

dimensioned, the set 𝑡𝑖𝑚𝑒 is not mentioned in the declarations of the variables 𝑖𝑛𝑣 and 𝑐𝑎𝑝.

Figure 5: Examples of Time Subscripting

set time (t0,t1,t2,t3,t4,t5) ;

set sectors (s1,s2,s3) ;

variable inv(sectors) ;

variable cap(sectors) ;

parameter dep ;

lead(cap) = cap*(1-dep) + inv ;

The accumulation equation is equivalent to (11):

(11) 𝑐𝑎𝑝𝑠,𝑡+1 = 𝑐𝑎𝑝𝑠,𝑡 ∗ (1 − 𝑑𝑒𝑝) + 𝑖𝑛𝑣𝑠,𝑡

It holds for all 𝑠 in 𝑠𝑒𝑐𝑡𝑜𝑟𝑠 and all 𝑡 in 𝑡𝑖𝑚𝑒 other than 𝑡5: Sym automatically recognizes that

the equation can’t apply in the last period. That leaves one fewer equation for each capital stock

than there are periods of time, which is usually exactly what is desired: the capital stock in period

𝑡0 would usually be set exogenously.

Also note that this example illustrates how scalars are handled by Sym. Because the depreciation

rate, 𝑑𝑒𝑝, is declared in Figure 5 as a scalar (i.e., the depreciation rate is identical across sectors),

it is automatically conformable with higher-dimensioned variables.

For convenience, Sym also implicitly provides singleton sets called 𝑓𝑖𝑟𝑠𝑡 and 𝑙𝑎𝑠𝑡 that represent

the first and last time periods. The 𝑙𝑎𝑠𝑡 set is convenient for defining equations and variables

that apply only at the steady state, which would usually be imposed in the final period of the

simulation. It allows the number of time periods to be changed (i.e., by adding 𝑡6, 𝑡7, etc.)

without requiring the model’s equations to be revised to match the change in the final period.

Support for subsets:

Sym includes extensive support for subsets. Subsets can be created in several ways, such as the

following which creates a subset 𝑝𝑟𝑖 (for primary factors) by removing two elements from the

earlier set 𝑖𝑛𝑝𝑢𝑡𝑠:

(12) 𝑠𝑒𝑡 𝑝𝑟𝑖 = 𝑖𝑛𝑝𝑢𝑡𝑠 − (𝑒, 𝑚);

Figure 6 shows a possible application of 𝑝𝑟𝑖: computing revenue (𝑟𝑒𝑣) collected from

households via a set of primary factor taxes (𝑡𝑎𝑥) (differences from earlier figures are shown in

bold). For clarity, 𝑣 has been replaced by 𝑣𝑝𝑟𝑒 to indicate that it is the value before taxes. The

notation 𝑣𝑝𝑟𝑒(𝑝𝑟𝑖) in the revenue equation indicates that only the elements of 𝑣𝑝𝑟𝑒 that have

subscripts in 𝑝𝑟𝑖 are to be used in this context. In effect, 𝑣𝑝𝑟𝑒(𝑝𝑟𝑖) is a subset of 𝑣𝑝𝑟𝑒 defined

over ℎ𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑𝑠 and 𝑝𝑟𝑖. As a result, 𝑣𝑝𝑟𝑒(𝑝𝑟𝑖) is compatible in multiplication with 𝑡𝑎𝑥,

which is defined also over 𝑝𝑟𝑖.

Figure 6: Example Use of a Subset

set time (t0,t1,t2,t3,t4,t5) ;

set households (ne,se,nw,sw) ;

set inputs (k,l,e,m) ;

set pri = inputs – (e,m) ;

variable p(inputs) ;

variable q(households, inputs) ;

variable vpre(households, inputs) ;

variable tax(pri) ;

variable rev(households, pri) ;

vpre = p*q ;

rev = tax*vpre(pri) ;

Sym also allows this kind of restriction to be imposed by including one or more set names as

qualifiers before the equation. For example, the revenue equation could have been given as:

(13) 𝑝𝑟𝑖: 𝑟𝑒𝑣 = 𝑡𝑎𝑥 ∗ 𝑣𝑝𝑟𝑒 ;

The initial 𝑝𝑟𝑖: indicates that Sym should treat all variables in the equation that are defined over

supersets of 𝑝𝑟𝑖 (that is, defined over 𝑖𝑛𝑝𝑢𝑡𝑠) as though they were restricted to the 𝑝𝑟𝑖 domain

via the (𝑝𝑟𝑖) notation. This form is more convenient in some circumstances. For example, the

following equation would cause the interest rate (𝑖𝑛𝑡) to be equal to the time preference rate

(𝑡𝑖𝑚𝑒𝑝𝑟𝑒𝑓) in the model’s last time period (the set 𝑙𝑎𝑠𝑡 will be discussed below), which would

typically be the steady state:

(14) 𝑙𝑎𝑠𝑡: 𝑖𝑛𝑡 = 𝑡𝑖𝑚𝑒𝑝𝑟𝑒𝑓 ;

As a variable, the interest rate would be defined over all time periods. However, (14) would only

apply in the last period.

Support for set aliases to remove ambiguities:

In some circumstances it is necessary to use a single underlying set for two or more dimensions

of a variable. To eliminate the ambiguities that would otherwise arise, Sym provides a

mechanism known as “set aliases”. Aliases are defined and used much like subsets but Sym

treats them as distinct from one another and not interchangeable for the purpose of checking

conformability or generating code. Aliases, in effect, are used to indicate a narrower

interpretation of the set.

As an example application, suppose a model has six goods (set 𝑠𝑒𝑐𝑡𝑜𝑟𝑠) and five regions (set

𝑟𝑒𝑔𝑖𝑜𝑛𝑠). In principle, each region could import each of the goods from each of the regions. If

the quantity of imports is 𝑖𝑚𝑝, it would need to be defined over three sets: one ranging over

goods, one ranging over countries of origin, and one ranging over countries of destination.

However, the following declaration would be ambiguous because 𝑟𝑒𝑔𝑖𝑜𝑛𝑠 is playing two

separate roles:

(15) 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑖𝑚𝑝(𝑠𝑒𝑐𝑡𝑜𝑟𝑠, 𝑟𝑒𝑔𝑖𝑜𝑛𝑠, 𝑟𝑒𝑔𝑖𝑜𝑛𝑠);

To avoid this, aliases for 𝑟𝑒𝑔𝑖𝑜𝑛𝑠 can be created and used to resolve the ambiguity. Figure 7

gives an example that uses two aliases, 𝑜𝑟𝑖𝑔 and 𝑑𝑒𝑠𝑡, to carry out a calculation of tariff revenue

by sector (𝑟𝑒𝑣𝑡𝑎𝑟) that correctly accounts for export prices at each good’s country of origin

(𝑝𝑒𝑥), and import tariffs at each good’s country of destination (𝑡𝑎𝑟).

Figure 7: Examples of Set Aliases

set time (t0,t1,t2,t3,t4,t5) ;

set sectors (s1,s2,s3,s4,s5,s6) ;

set regions (us,can,mex,eu,row) ;

set orig = regions ;

set dest = regions ;

variable tar(sectors,regions) ;

variable pex(sectors,regions) ;

variable impt(sectors,orig,dest) ;

variable revtar(sectors,regions) ;

revtar = tar*sum(orig,pex(orig)*impt) ;

variable expt(sectors,regions) ;

expt = sum(dest,impt) ;

The equation for 𝑟𝑒𝑣𝑡𝑎𝑟 implies that revenue collected by the US on imports of good 𝑠1 from all

other countries would be computed as:

(16) 𝑟𝑒𝑣𝑡𝑎𝑟𝑠1,𝑢𝑠 = 𝑡𝑎𝑟𝑠1,𝑢𝑠 ∑ (𝑝𝑒𝑥𝑠1,𝑜 ∗ 𝑖𝑚𝑝𝑠1,𝑜,𝑢𝑠)𝑜

In the absence of ambiguity, variables defined over aliases are conformable with variables

defined over the original sets. For example, in the calculation of exports (𝑒𝑥𝑝𝑡) in Figure 7, the

result of the sum is defined over 𝑠𝑒𝑐𝑡𝑜𝑟𝑠 and 𝑜𝑟𝑖𝑔. However, since 𝑜𝑟𝑖𝑔 is an alias for 𝑟𝑒𝑔𝑖𝑜𝑛𝑠,

and 𝑒𝑥𝑝𝑡 is defined over 𝑠𝑒𝑐𝑡𝑜𝑟𝑠 and 𝑟𝑒𝑔𝑖𝑜𝑛𝑠, there is no ambiguity and the sum is

conformable with 𝑒𝑥𝑝𝑡.

Replicating variables across additional domains:

Finally, in some circumstances conformability may require explicitly replicating a variable

across an additional domain. For example, some calculations involving the export prices from

the previous example may require an export price for each destination country even though

export prices only vary by country of origin, not by destination. In that case, conformability can

be achieved by using the notation 𝑝𝑒𝑥#𝑑𝑒𝑠𝑡, which indicates that all destination regions in 𝑑𝑒𝑠𝑡

use the same variable 𝑝𝑒𝑥. Roughly speaking, it is equivalent to duplicating 𝑝𝑒𝑥 for each

destination country.

Summary:

Overall, Sym preserves the clarity of matrix notation but avoids its liabilities by imposing strict

conformability rules. By doing so, it is able to determine an unambiguous alignment of

dimensioned variables in any operation without regard to the ordering of the variables and

without the need for explicit subscripts. The result is that models can be expressed very

compactly and many potential opportunities for coding errors are eliminated.

2.4 Planned Modules for Open IGEM

At present, the envisioned structure of Open-IGEM follows the IGEM Fortran code. Thus, there

are planned modules for producers, households, investment, governments, and trade. Partitions

of these may arise during development as a means of reducing complexity, increasing

transparency, or isolating components for possible substitution or model linkage. There will be

an intra-temporal module that unifies these within-period strands and an inter-temporal module

that governs IGEM’s dynamics and foresight.

3 Implementation in GEMPACK

Sym will be used to produce a set of files that implement the model in TABLO, the native

modeling language used by GEMPACK. GEMPACK will then be used to solve the model. Sym

will be used as the front end language rather than implementing the model directly in TABLO in

part because Sym’s notation is much more concise. For example, Figure 8 shows the earlier

example calculation in both Sym and TABLO.

Figure 8: Example Model in Sym and TABLO

S
y
m

set time (t0,t1,t2,t3,t4,t5) ;

set households (ne,se,nw,sw) ;

set inputs (k,l,e,m) ;

variable p(inputs) ;

variable q(households, inputs) ;

variable v(households, inputs) ;

variable vby(households) ;

variable von(inputs) ;

v = q*p ;

vby = sum(inputs, v) ;

von = sum(households, v) ;

T
A
B
L
O

set households (ne,se,nw,sw) ;

set inputs (k,l,e,m) ;

set (intertemporal) time (t0,t1,t2,t3,t4,t5) ;

variable (all,i,inputs) (all,t,time) p(i,t) ;

variable (all,h,households) (all,i,inputs) (all,t,time) q(h,i,t) ;

variable (all,h,households) (all,i,inputs) (all,t,time) v(h,i,t) ;

variable (all,h,households) (all,t,time) vby(h,t) ;

variable (all,i,inputs) (all,t,time) von(i,t) ;

equation EQN1 (all,h,households) (all,i,inputs) (all,t,time)

 v(h,i,t) = q(h,i,t)*p(i,t) ;

equation EQN2 (all,h,households) (all,t,time)

 vby(h,t) = sum(i,inputs,v(h,i,t)) ;

equation EQN3 (all,i,inputs) (all,t,time)

 von(i,t) = sum(h,households,v(h,i,t)) ;

However, using Sym as the front-end language has additional benefits as well. It implements the

conformability restrictions discussed above to be imposed and is not susceptible to errors

regarding the order of subscripts. In addition, it allows the model to be moved to a different

solution package very easily, if needed.

GEMPACK is well established in the general equilibrium modeling community. It is widely

available, robust, well-supported by the Centre of Policy Studies at Victoria University, has a

large user base (including the GTAP project at Purdue University), and has a proven track record

over the last 25 years. Moreover, it satisfies the design criteria for Open IGEM: (1) it is

scrupulously well documented and its solution procedure is transparent; (2) it is highly flexible

and allows endogenous and exogenous variables to be switched easily during individual

simulations with no recoding of the model required; (3) it is reliable and requires little or no

adjustment of the solution procedure by users, and it is not subject to convergence failures on

correctly specified models; and (4) it has high capacity and is suitable for large models.

Although it has many strengths for general equilibrium modeling, GEMPACK’s solution

algorithm does impose one limitation on Open IGEM. Internally, GEMPACK represents

intertemporal models as a large block-diagonal system of equations, with one block for each time

period. Although the system is very sparse, and GEMPACK uses sparse matrix algorithms

throughout, the memory and time required to solve the model will rise somewhat faster than in

proportion to the number of periods. IGEM itself is typically solved at a one-year frequency

over a 100 year interval but we expect that a 100-period solution in GEMPACK will take more

time to compute than most users will be willing to wait. It will therefore be necessary to use

fewer time periods and solve the model at something other than annual frequency.

We do not, however, think this is a significant limitation. Many other models are solved with

periods more than one year apart. Moreover, it is possible to produce a highly accurate solution

using a small number of periods distributed strategically over the interval to be modeled. A first-

order Taylor Series approximation shows that the error introduced in a given variable by spacing

periods more than one year apart will depend on the variable’s second derivative with respect to

time and the number of years between the periods. As a result, an accurate solution can be

obtained by spacing periods far apart during years when derivatives of variables in the model

will be changing slowly, which is typically the later years of the simulation. For example, a

model might be solved over a 100 year interval by including ten periods set in the years 0, 2, 4, 6,

10, 20, 35, 50, 75, 100.

Finally, although GEMPACK is probably best known for solving linearized models quickly, it

has a suite of features that allow it to compute nonlinear solutions as well. There is also a well-

established boot-strapping procedure for building initial solutions (i.e., baselines) for nonlinear

models.

4 Deployment

The completed implementation of Open IGEM will be made available via GitHub, one of the

most well-established and widely used platforms for open source projects. Full source code for

the Sym program (written in C) will be provided, as well as the Sym files for the model, data

files containing the model’s parameters and exogenous variables, and utility programs written in

Python. Posting the model on GitHub will allow it to be downloaded by anyone, and will also

allow users to create their own derivative models by forking the project. In addition, GitHub

provides a robust and transparent mechanism for reviewing and incorporating revisions. This

mechanism will make the evolution of the model completely transparent to outside users, and

will also enable those users to make suggestions that could be incorporated into the model by the

IGEM team.

